
1 INTRODUCTION 
 
In Sweden, the maintenance of railway track geome-
try is primarily based on tamping. The tamping action 
is most often triggered by measurements performed 
by single measurement trains. The procedure has 
been to let single measurements trigger corrective 
maintenance if the geometry falls outside tolerable 
limits. However, there are also initiatives to base 
maintenance planning with a long time horizon on a 
practice using repeated measurements from the meas-
urement trains (Vågbrink, 2019). The applied model 
is produced in-house by engineers at Trafikverket (the 
Swedish Transport Administration), and imple-
mented in the Optram decision support system 
(Smith, 2016). However, the Optram system is only 
capable of using models of low complexity; e.g., it 
does not allow for iterations, and it uses a constant 
degradation rate for the whole track system, that is, 
individual differences in track stability is not ac-
counted for (Nissen, 2019). 

 
 

2 PURPOSE 
 
This paper studies the prediction abilities of different 
analytic and data-driven methods for railway track 
geometry. The paper also discusses how data-driven 
models are affected by measurement errors of the 
track property, such models’ ability to detect seasonal 

effects, and how they are affected by irregular sam-
pling. 

 
 

3 THEORY 
 
Methods for prediction could be based either on phy-
sics, stochastics or on hybrids between the two. Mod-
els based on physics-of-failure are typically used to 
obtain deterministic point predictions and rely on that 
some events cause the system to react. These models 
of physics usually require knowledge of a certain ex-
ternal factor. If all variables are known, the outcome 
is also fully determined. These models also go under 
the name white-box models (Ljung, 2001) or first 
principles models, in that they are based on first prin-
ciples such as Newtonian equations.  

While physics-of-failure models can be powerful, 
their value for complex systems such as railway con-
dition decay is often limited. Hybrid, or grey box, 
models (Ljung, 2001) may be based on some empiri-
cal experiments, for instance, a test of soil compac-
tion, mechanical fatigue mechanisms as functions of 
stresses and cycles and so on. In this case, a hybrid 
model for track geometry degradation could be based 
on soil-mechanic models and measurements or calcu-
lations of the particular stresses that affect the rail-
way. By calculating the particular load and stress that 
a track is subjected to, the deformation can be 
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predicted. A substantial benefit from physics and hy-
brid models is that they can aid the understanding of 
the driving mechanisms, which can be used in the so-
lutions to address the same principles.  

Stochastic, or black-box, models (Ljung, 2001) 
acknowledge that there is variation and requires that 
some variables contain a measure of randomness. The 
purpose of such modelling is to determine how prob-
able a particular outcome is, based on a set of obser-
vations that may include some element of uncertainty. 
Monte-Carlo simulations are examples of where un-
certainties are used to calculate the probabilities of 
specific outcomes. A data-driven modelling approach 
falls into this category, and may often be suitable for 
modelling complex systems. By using observations 
from gauges of the inputs and outputs of the system, 
a data-driven modelling approach connects known 
outcomes with the variation seen in the inputs. By us-
ing the historical reactions of the system as a tool, the 
use for prognostics assumes that the system will be-
have similarly for future events. As such, the data-
driven approach does not need to employ systems 
knowledge; the data-driven empirical model will 
have a predictive ability as long as the system behaves 
similarly to how it has behaved in the past. Down-
sides include that learning from such models may be 
limited, but also if essential variables that were con-
stant during the model-building phase change in later 
phases. 

 
 

4 METHOD 
 
This section focuses on solutions for managing chal-
lenges of collected data and compares the usefulness 
of different prognostic modelling approaches.  

4.1 Data collection and cleaning 
The studied data is from one track section of the Swe-
dish rail network, collected between the years 2007 
and 2019 and describe track geometry properties and 
their location. One measurement train, the IMV 200, 
currently performs most of the Swedish track geome-
try measurements. This train is capable of measure-
ments of up to 200 km/h. These measurements are 
complemented by measurements by smaller measure-
ment trolleys with top speeds of 100 km/h. Most 
measurements until 2013 was performed by the now 
retired STRIX measurement car.  

The cars use accelerometers and gyros for their ge-
ometric measurements and use those together with the 
recorded speeds to calculate, e.g. the height of the 
track by integration of the acceleration and consider-
ing the train speed. The vertical speed of the accel-
erometers is obtained by the first order integral of the 
acceleration; a second integration can obtain location 
if the constant speed of the train is acknowledged. 
The number of calculated measures has increased 

over the years, starting from 24 variables in 2007; 
each measured every 25 cm of the track length.  

Of the measured properties, seven properties 
contain so called point-defect types, that is, defects 
with a limited extension in the track direction. These 
point defects are regulated with maintenance limits 
and were considered of particular interest in the pre-
sent study. The regulated measures were two twist 
measurements (base 3 and 6 meters), the track gauge, 
along with the height and side deviations for both 
rails, measured within the shortwave (1-25 m) spec-
trum. In this paper, we will study the 6m twist varia-
ble, (also known as the cross-level). This property has 
potential safety-related consequences, since a too 
large twist may induce derailments. The regulations 
for maintenance requires maintenance in three levels. 
When the lowest level, UH1 (maintenance limit 1) is 
surpassed, maintenance planning must be done so that 
the next level, UH2 (maintenance limit 2), is not sur-
passed before the next planned maintenance period 
(TDOK 2013:0347). The next level, UH2, requires an 
immediate corrective maintenance action. Finally, 
there is a critical limit (KRIT), where traffic re-
strictions, such as reductions of maximum speed or 
stopped traffic are required (TDOK 2013:0347). For 
the 6-meter twist defects, the UH1, UH2 and KRIT 
limits are 11, 17 and 25 mm/m respectively (TDOK 
2013:0347).  

The measurement cars use dead reckoning and 
GPS signals, as well as manual inspections by opera-
tors passing certain objects, e.g. road passages, to link 
observations to a particular position. The positioning 
requirements of the measurement car measurements 
have been +/- 10 m along the track (SS-EN 13848-
1:2003+A1:2008). The localisation accuracy demand 
has risen the accuracy demand to +/- 2 meters Easting 
and Northing (i.e. in Cartesian coordinates) (TDOK 
2013:0347). However, the Swedish measurements 
have not lived up to that accuracy; in reality position-
ing errors of up to 50 meters have been found for 
older measurement cars before 2013, and the current 
accuracy seems to be around +/- 10m. 

4.2 Chosen track section 
The studied track section (119) is part of the Swe-

dish Iron ore line, a heavy-haul line stretching be-
tween the harbours of Luleå in Sweden and Narvik in 
Norway with an accumulated yearly tonnage of about 
34 million gross tonnes (Asplund et al., 2017). It is 
reasonable to assume that the condition of the Iron ore 
line is difficult to predict for two reasons: the partic-
ular climate and the high axle load. Models that allow 
for accurate predictions under such circumstances are 
likely useful also for railways lines operating under 
less severe environmental conditions with lower axle 
loadsaxle load, since models that work in these con-
ditions could be assumed to be validated for among 
the worst possible conditions for predictive purposes.  



It is well known that climatic conditions make rail-
way maintenance more difficult in regions where cli-
matic conditions such as ground frost change the vol-
ume and stiffness of the substructure and thus change 
the actual rail geometry (e.g. Larsson-Kråik, 1999; 
Tai et al., 2017). The Iron ore line is located both in 
sub-arctic and arctic conditions, with temperatures 
varying between over 30°C in the summer to below  
-40°C in the winter. The maximum allowed axle load 
is currently 32.5 metric tonnes. High axle loads are 
also a factor affecting sub-grade quality (Li & Selig, 
1995), and thus geometric stability.  

The studied track section 119 lies between the cit-
ies of Boden and Luleå. The track is a single track 
with side-tracks, has a total length of around 35 km. 
Besides the end stations, the track contains two sta-
tions in Gammelstad and Notviken. The track has a 
sub-arctic climate, with warm summers and cold win-
ters. The highest allowed track speed for the track in 
good condition ranges between 120-140 km/h.  

The high annual load, combined with a high axle 
load does make the track to qualify for the most fre-
quent geometric measurements (inspection class 4, 
BVF 807.2) by measurement trains. The BVF 807.2 
regulations introduced in 2005, require measurements 
to be performed at least six times per year for inspec-
tions class 4. In reality, measurements are not always 
as frequent, see Figure 1. Especially for the first four 
years where data are available, measurements are 
few. Figure 1 shows the number of measurements 
each year that that had produced measurement data 
for at least 75% of the whole track section. Note that 
a few years hold additional measurements or dupli-
cate measurements. The Luleå station is an endpoint 
station, and the only connection from Luleå is through 
Boden using track section 119. Hence, sometimes the 
measurement train measures the same track both go-
ing back and forth, with a relatively short time in-be-
tween. Usually, the return trip only involves measure-
ments of a few kilometres or side-tracks.  

These duplicate measurements are useful for cal-
culating the train measurement uncertainty 
(Bergquist and Söderholm, 2016), and it can be 
assumed that the average of both measurements are 
better than either one of them due to that the average 
will have lower measurement noise. However, un-
precise measurements with a high degree of measure-
ment noise close in time is not very helpful for under-
standing the slow degradation rates, since measure-
ment noise will hide the much smaller degradation 
rate signal.  

 
Figure 1. The number of measurements with measurement train 
on track section 119 per year, 2007-2018.  

 
Many tools for time series analysis and forecasts 

require that data are sampled with even frequencies, 
and these data are not sampled in such a way. Figure 
2 shows the time sequence of the used measurements.  

 
Figure 2. Measurements of more than 75% of track 119, placed 
on a time-scale, 2007-2018.  
 

The data were regularised to overcome the misfit 
between the data with a different number of 
measurements each year and the method 
requirements of equal number and equally spaced 
observation. Each year was split into quarters, and 
measurements in that quarter were represented by the 
quarter date (March 31, June 30, September 30, and 
December 31). For example, observations from Janu-
ary 1 until, and including, March 31 a particular year 
were included in the March 31 pseudo-observation. If 
several measurements were obtained from a particu-
lar quarter, the pseudo-observation was represented 
by the average. Likewise, the measurement uncer-
tainty was calculated for all measurement cars using 
the duplicate measurements using the methodology 
outlined in Bergquist & Söderholm (2016). The 
measurement uncertainty for quarters with multiple 
measurements was reduced according to how many 
measurements that constituted the base for the 
average calculation. 

For point defects, such as twist or gauge problems, 
large positioning errors are problematic for the 
maintenance crew, but also for a data-driven predic-
tion approach. If the growth of localised defects is to 
be monitored, uncertainties about their locations may 
cause the models to miss a specific fault at a particular 
location where it was located earlier.  



Two basic approaches have been used to pinpoint 
specific point defects despite uncertainty in 
localisations. One approach is to calibrate the posi-
tions given in the data to known positions, such as 
switches that give rise to unique signatures in the 
measurements. The other approach is to handle uncer-
tainty in positioning by splitting the measurements of 
the track into segments. These segments should be 
long enough for the probability, of a particular failure 
being counted in one passage but not in the next, to 
be low, unless it is near the segment border. Due to 
ease of calculation and challenges of the first ap-
proach, the latter approach was used here, and the 
segment length was chosen to be 200 m. 

Another cause for irregularity is that the measure-
ments are difficult to perform in some months. In 
winter, it is difficult due to cold and snowy condi-
tions, especially in January, which prevents some of 
the measurements, and in July due to summer vaca-
tions of the staff, see Figure 3. The requirements 
(BVF 807.2) do not state how to spread out these six 
measurements in time, just as long as six measure-
ments are taken during a particular year.  

However, while it may be practical to measure 
when measurement conditions are benign, and the 
staff are available, the irregularities prevent some 
analyses. It is, for example, likely that the track ge-
ometry will deform cyclically for parts of the track 
due to frost heave. With more frequent and evenly 
spread measurements, analyses of the effect of frost 
heave could have been performed. The irregularities 
and the effect of a suspected frost component will add 
to the uncertainty of the measurements. However, 
since the size of this effect is unknown, and is ex-
pected to differ between different segments, we can-
not compensate for frost. Therefore, such effects will 
add to the measurement noise.  

  

Figure 3. Distribution of measurements taken each month spread 
on a yearly cycle.  

4.3 Data preparation 
There are at least two basic options when studying the 
condition of a variable for a given segment; looking 
at how much the variable varies or looking at the max-
imum value. For the twist measurements, the maxi-

mum value of a segment is what triggers mainte-
nance, but on the other hand, variation may be more 
important for understanding the general condition of 
the segment. However, here we concentrate on the 
maximum value seen in the segment. The reason 
being that the maximum value is more 
straightforward to connect to the maintenance limits. 
A study of the variation would give similar results; in 
fact, the two measures are highly cross-correlated 
(correlation coefficient 0.82). 

The first step was thus to bin the data into 200 m 
groups for each measurement and then collect de-
scriptive statistics for the groups. This step was per-
formed using Microsoft Power BI Desktop® version 
2.61.5192.601 64-bit.  

Most methods used for prognostics require, or at 
least perform better if the data are independent and 
normally distributed. A normal probability plot of the 
collected data shown in Figure 4 shows some issues 
that need to be handled.  

The data contained many zero observations and 
even negative values. Negative values are impossible 
through the definition of the twist variable, and max 
values of zero are, in reality, impossible for a 200 m 
segment. Thus, these observations were removed. 
With the zero and negative values removed, the dis-
tribution still needed a transformation to resemble the 
normal distribution more closely. A log transfor-
mation improved the fit and could be considered rea-
sonable, given that the maximum twist has a true 
lower limit of zero and no upper bounds.  

 
  

Figure 4. Normal probability plot of max 6 m twist for segments 
over the period. The line depicts the expected shape of data sam-
pled from a normally distributed population, drawn from the 
quartiles of the plotted data.  
 

The binned and transformed data were then 
imported to RStudio, version 1.1.456 for further anal-
yses.  

4.4 Data analysis and prognostics 
The prediction ability for different predictive models 
can be analysed using parts of the data as the training 
set, create models and then use the remainder and 
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most recent data as the validation set. A validation set 
of around 20% of the observations are often consid-
ered appropriate (Hyndman & Athanopoulos, 2018), 
but this also depends on the purpose of the prognoses 
and the length of the available time series. The mod-
els’ predictive ability can then be compared using dif-
ferent statistical measures. Here, we used data ob-
tained from June 2017 and onward (two years) as the 
validation dataset and older data as the training set.  

Another analysis challenge is that the maintenance 
actions, in this case, tamping, are meant to change the 
conditions of the track, and such maintenance will, if 
it is efficient, change the time series as interventions 
that affect the observations. The maintenance is 
procured through a public tendering procedure, and 
an entrepreneur performs the maintenance of the 
track. The current maintenance contract states that the 
entrepreneur should tamp one-third of the track each 
year as a preventive action. The entrepreneur and 
Trafikverket (the Swedish Transport Administration) 
jointly plan the maintenance. Their joint planning is 
thought to secure that the tamping machine is used 
efficiently and that the tamped segments are those 
that are most likely to lead to problems shortly, i.e., 
that tamping is both efficient and effective. Tamping 
is also performed as corrective actions when the 
maintenance thresholds UH2 and KRIT are sur-
passed.  

All segments of the studied track section have been 
tamped at some point in the twelve years’ time series. 
We have considered models that restart when geomet-
rical conditions improve drastically and other models 
that do not. We have also chosen to use segments that 
were not tamped during the validation period (after 
July 2017) for best fit, and have limited the number 
of tampings performed on the segment to a maximum 
of five, none of which was performed in the valida-
tion period. Our delimitations resulted in 21 valida-
tion segments with an average number of tampings 
equal to 3.6, during the training data period. We have 
used the empirical data represented by each studied 
segment for all tests; that is, we have calculated an 
individual estimate of the state as well as the state 
degradation rate.  

There are several methods to evaluate the fore-
casts. Here we have presented the Root Mean Square 
Error (RMSE), a measure that uses the squared differ-
ence between observations and, therefore, its predic-
tion will weigh large deviations more than, say the 
Mean Absolute Error (MAE), where only the average 
difference is summed. Hence, the choice between 
RMSE and MAE will depend on if it is more 
important that large prediction errors seldom are 
made or if the prediction errors on the average should 
be small. We assume that the maintenance planner 
would not want to miss segments that are degrading 
fast, and then RMSE will likely be the better choice. 
The Mean Absolute Percentage Error (MAPE) 
measures the same as MAE, but is independent of 

scale. Finally, Hyndman & Koehler (2006) recom-
mends MASE for prediction errors due to its insensi-
tivity to outliers and the ease of interpretation. Again, 
outliers could be interesting for the planners, so the 
suggested measure here is RMSE, although the others 
are shown for reference. Indeed, outlier predictions 
may not be as important as we would expect.  

4.5 Predictive models 
If a prognostic model is to be considered useful, it 
needs to outperform the benchmark models. Some 
prognostic models can make forecasts not only for the 
state and trends, but also for cyclic, seasonal behav-
iour. All studied models lack seasonality components 
since the measurement frequency of the underlying 
data did not allow for good estimations of seasonality 
components. The benchmark models and prognostic 
models are schematically presented below. 

4.5.1 Benchmark prognostic models 
A standard benchmark for prognoses is to use a ran-
dom variation approach, i.e. that the last known ob-
servation to predict the future state and a draw from 
the variation of the process will be used to estimate 
the future state. Here, this approach is called Random 
walk.  

Another common benchmark is to use the average 
of the training set and then predict that the future ob-
servations will be close to that. We have called that 
benchmark Simple averaging.  

A third useful benchmark is to calculate the drift 
of the series and add that to the last observation, that 
is, a linear model based on the training set. 

4.5.2 More advanced prognostic models 
The first approach with some sophistication com-

pared to the benchmark models is to use a linear 
model, that is, a regression of the old data and extra-
polated into the future. This model is here called the 
Linear model. 

The state-space modelling approach is another 
means to obtain forecasts, where also some 
knowledge of, not only the current state, but also what 
it used to be is considered. The Kalman filter is a well-
known state-space model that in the steady state re-
duces to simple smoothing (Harvey, 1984). Here, we 
have studied the exponentially smoothed state space 
model (Hyndman et al., 2002), here called the ETS 
model.  

The well-known ARIMA models, or Box- Jenkins 
models, also often make good prognoses. ARIMA 
stands for Auto Regressive, Integrated Moving Aver-
age. Often, it can be difficult to know the correct or-
der of the AR, I and MA parts of the ARIMA, and 
tests in the current data did not indicate that the data 
fit was best for a particular order. The Auto-Arima 
approach (Hyndman & Khandakar, 2008) was used to 
obtain the order and constants chosen directly.  



Another state-space model that combines state-
space with a Box-Jenkins approach, the exponential 
smoothing state space model with ARMA errors and 
a trend is another model that was studied, here called 
the SAT model (De Livera et al. 2011).  

Finally, we use a neural network approach, using a 
single-layer, feedforward network, which can gener-
ate non-linear predictions.  

 
 

5 RESULTS 
The time series of the chosen segments were analysed 
individually, and the errors were summed and are 
presented in Table 1. Hence, every prediction error 
presented in Table 1 is a summary of prediction errors 
over both the eight validation quarters (Q2 2017 – Q1 
2018) and the 21 chosen validation segments. 

The linear model did outperform the benchmark 
models and more advanced models for this data based 
on the error of the predictions of the validation set, 
see Table 1. Its performance was better, regardless of 
which measure that is considered (RMSE, Root Mean 
Square Error; MAP, Mean Absolute Error; MAPE, 
Mean Absolute Percentage Error). The Cubic spline 
was the model with the worst performance for all four 
prediction error measures. See Table 1. 
  
  
Table 1.  Prediction errors of the maximum 6 m twist variable 
for different predictive models 

Prediction error measures [log(mm/m)] 
Model RMSE MAE MAPE MASE 

Linear model 2.77 2.46 1146 -        * 

ETS 3.12 2.74 1448 26.1 

Auto ARIMA 3.35 3 1544 27.6 

Simple averaging  3.36 3.02 1725 28.1 

SAT 3.42 3.02 1295 29.8 

Random walk 3.64 3.2 1373 29.8 

Neural Net 3.74 3.09 1577 29.7 

Cubic Spline 4.85 4.4 1983 38.1 

* No MASE data was obtained for the linear model 
  
6 DISCUSSION 
That a linear regression model was the best model is, 
perhaps, surprising, given that so much effort has 
been put into research for more effective prognosis 
models. However, more research is needed to under-
stand if linear models are sufficient when the track 
has been maintained more often than in the chosen 
segments. Likely, a forecasting approach that restarts 
from the latest tamping could be a better choice.  

A model that uses a localised trend, restarted from 
the maintenance should also outperform a linear 
model based on a regression of the data from the first 
observation, as it did here. This relationship is also 
likely due to comparably small effects of tampings in 
the studied segments.  

Nonetheless, a linear model with prediction errors 
is more powerful than just using the latest observa-
tions and more potent than not using the trend. A lin-
ear model is also useful in the sense that it is easy to 
implement in railway management systems that can-
not handle iterations. The use of standardised soft-
ware and transparent programming supports 
integration and implementation with current practices 
and it-environments.   

Note that the training dataset did include mainte-
nance, while the validation dataset did not. Any 
maintenance meant to improve the condition of the 
studied property is likely to affect it, and thus, the em-
pirical models based on that data. A suggested future 
research objective is to generate data that can be used 
to model the effect such maintenance has on the prop-
erties. Based on studying the data, tamping effects on 
twist ranges from significantly lowering the twist var-
iation of a segment, to leave conditions seemingly un-
affected. Another conclusion is that there seem to be 
short-term effects when the maintenance was effec-
tive, such that the track needs some time to settle. The 
short-term effect thus seems to be an improvement 
followed by a rapid degradation process within a year 
of the maintenance, and then things settle to lower 
degradation rates. Studies that help predict such be-
haviour would be useful for modelling the data and 
for prediction of post-maintenance conditions.    

 
Figure 5. Maximum 6 m twist for one of the segments of track 
section 119. Vertical hashed lines represent known tampings. 
Note that some maintenance actions seem to leave the track un-
affected, while others decrease the max absolute value. Large 
effects of the tamping sometimes are followed by rapid degra-
dation rates.  



 
We also expect that much of the variation seen in 

the data stems from that different measurement trains 
were used. Scrutinizing the output data, the trains 
seem to have different pre-processing, so some trains 
produce smoother curves. This will affect the obser-
vations, including the max values seen for a segment. 
It is not unlikely that properties such as the max value 
will contain different amounts of error from the trains, 
for instance due to different calibrations. Both of 
these measurement errors increases measurement 
noise. Since such variation may be systematic in that 
measurement trains are retired and replaced by others, 
it is not unlikely that such systematics in the data will 
affect the more complex models more than the sim-
pler ones. For this reason it may be better to focus on 
data from just one measurement train may, but this 
hypothesis requires further research to be tested. 

 
 

7 CONCLUSIONS 
The paper has studied statistically based prognostic 
methods for the condition of the railway geometry, in 
this case, the log-transformed maximum twist (6m) 
seen on 200 m segments. The best prognoses for this 
data were obtained by using a linear regression 
model, which is useful from an implementation stand-
point. The more advanced models including Neural 
Nets, Cubic Splines, Kalman filters, or the SAT mod-
els did worse than the simpler Linear model. The 
more advanced models are also more flexible, and the 
poorer performance of these models are likely a re-
flection of that the data does contain unexplained ir-
regularities and likely a low signal to noise ratio, 
whereby the more flexible methods react to such 
noise. We expect further improvements if the behav-
iour of the track after maintenance can be better un-
derstood, and we also speculate that improvements 
can be made by only using measurements from one 
measurement train.  
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