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Abstract  
This paper presents graphical methods for monitoring, diagnostics, and prognostics of the 
condition of railway infrastructure as support to maintenance planning. The paper also 
uses graphics to aid univariate, bivariate and multivariate analyses of large datasets of 
secondary data for linear asset condition assessment in the temporal and spatial domains. 
We present graphical methods useful for evaluating how the asset degrades and how 
maintenance actions affect the track condition within different time horizons. Hence, the 
infrastructure manager and the contracted entrepreneur can share a common view of the 
asset’s current and future condition, as well as maintenance effectiveness. 
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Introduction 
In Sweden and elsewhere, condition assessments are increasingly often used for decisions 
on when and where to maintain different systems of the railway infrastructure, e.g. power 
supply, signalling, track, and catenary systems. Special measurement trains that regularly 
measure important variables are currently the predominant way to perform inspections to 
obtain condition measurement data for the track and the catenary systems. The 
infrastructure manager or contracted entrepreneurs plan for the needed maintenance when 
measures surpass certain threshold limits. The importance of the variable and the severity 
of the deviation from the designed limit dictates the time bounds before actions are 
required, as well as the type of action itself. In Sweden, such times can range from acute, 
requiring immediate corrective traffic management and maintenance actions, up to 
planned maintenance actions within three years after detection (Stenström, 2015). Thus, 
measurements trigger much of the maintenance and its planning. If the timetable (i.e., set 
18 months before execution) does not allow inclusion of the required maintenance, there 
is a significant risk that the required maintenance action disturbs the railway traffic, 
requiring line shutdowns, train delays or cancellations. Condition measurements are thus 
of utmost importance. However, current diagnostic practice only uses measurements from 
the last passage of the train to monitor the asset’s current condition.  
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However, to use only the last measurement makes the maintenance decision more 
susceptible to measurement uncertainty. Uncertain measurements do on the one hand 
force the infrastructure manager to lower maintenance threshold limits to maintain low 
system risks for accidents due to undetected faults. On the other hand, this practice 
increases the false alarm rates.  

Additionally, many maintenance actions may themselves reduce the life of the 
infrastructure items (Arasteh Khouy, 2013; Famurewa, 2013), so the maintenance cost is 
not limited to the replacement costs of items worn by use and of costs for personnel and 
machinery (Patra et al., 2009). One example is ballast tamping; an action performed to 
realign the track. Tamping involves lifting the rails and sleepers while pushing a fork like 
equipment into the ballast beside the sleepers. The forks will then vibrate, which will 
fluidise the ballast so that it will flow in under the sleepers. When the machine lowers the 
track, tamped segments will be higher, which will hopefully reduce some geometry faults. 
Tamping is expensive, and the vibrating forks crush some of the ballast rocks, reducing 
ballast life and at the same time producing fine material, which reduces the dewatering 
properties of the superstructure. A rule of thumb used by the Swedish Transport 
Administration is that the ballast can withstand ten tampings before it needs replacement 
or ballast cleaning; maintenance actions that are classified as reinvestments and should 
improve the condition in such a way that it is considered to restart the life cycle of the 
ballast. 

In the north of Sweden, geometrical deviations may indeed be real, but temporary. A 
temporary displacement of the track may be due to ground frost, which in turn, is a 
condition that is due to water in the superstructure or substructure. Hence, a temporary 
speed restriction until conditions settle may be the proper action for some geometrical 
deviations, rather than to perform maintenance and possibly worsen the situation. 
Underestimating (false alarms) or overestimating (undetected faults) will both degrade 
the condition decision quality thus increasing cost and degrade system usability. 
(Bergquist & Söderholm, 2012, 2014) 

Better data analysis and better asset condition knowledge thus become essential. When 
the maintenance personnel acquire asset condition data, they usually screen them for 
causes for alarm, that is, to check whether some assets need attention shortly. Those areas 
where there is an acute need, or where it is evident that things are about to become acute 
are further studied, and those areas will be scheduled for maintenance. The rest of the 
measurement data will likely be stored away for later reference. However, an approach 
that stops with storing data for later without anyone analysing them is only a waste of 
storage space. A better way is to use data to help gain an understanding of the asset 
condition and how the condition changes over time. Data analytics in general (Levrat et 
al., 2008; Karim et al. 2009) and the reoccurring measurements allow for time series 
estimations of how the track conditions evolve (Bergquist and Söderholm, 2016). 
Additionally, it is possible to display, extract and analyse vital information from large 
datasets. Hence, condition assessment based on proper methodologies and technologies 
could substantially reduce maintenance-related costs and increase infrastructure capacity 
while maintaining traffic safety (Arasteh Khouy et al., 2014; Soleimanmeigouni et al., 
2018). 
 
Aim 
This paper aims to demonstrate how graphic representations and modelling may aid 
monitoring, data quality assessment, diagnostics and prognostics of the track condition to 
support asset management maintenance planning.  
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Method 
The method we use is to study stored condition monitoring data for asset measurements, 
and here we study railway track geometry data.  
 
The studied case, the Boden – Luleå track section 
The data for this study stems from measurements of the Swedish Iron ore line. 
Measurement cars measure the geometry with some regularity and with current 
regulations, the measurements are performed six times yearly. Four different 
measurement trains and trollies produced the data between 2007 and 2018. The 
measurement trains and trollies have somewhat different measurement performance and 
measurement profiles, such as top speed of measurements, and they have different axle 
loads.  

The studied track section 119 links the cities of Boden and Luleå and is 35 km in 
length. Besides the Luleå and Boden stations, the section also has stations at a regional 
hospital in Sunderbyn, a freight terminal station in Gammelstad and a commuter station 
at Notviken. Track 119 is relatively straight and does not include short radius curves. The 
track is a single track with meeting point sidetracks, and both passenger and goods traffic 
use it. Track 119 is a heavy haul line classified to handle a maximum of 32.5 metric tonnes 
axle load.  

 
Dataset issues 
The data analysis of historical data usually starts with an analysis of the data itself; that 
is, a study of the data quality. One way of discussing big data is the 4V-model of Katal et 
al. (2013), comprising of data volume, velocity, variety and value. To those, a fifth V 
have been added, veracity (e.g. Lukoianova & Rubon, 2014). The value of the data 
depends on their trustworthiness. The dataset in this paper relates to numerical data, in 
which data veracity may refer to erroneous measurements, and the objectivity of the data 
and the collection systematics are not problematic per se. However, the veracity may be 
hurt from poorly calibrated or faulty instruments, erroneous data pre-processing and 
erroneous data positioning when several data sources are combined to one dataset.  

Data may thus be erroneous, may be missing, and measurement data always contain 
noise. In all likelihood, the data needs cleaning before the data quality is sufficient for the 
analysis task. Often, the quality will remain too low, for instance, because of a too low 
information-to-noise ratio even after the analyst has cleaned the data. The risk that the 
database does not contain all that is relevant to the goals of the study is always present. 
Assume that the analyst will use the data for a regression task to find correlations among 
properties or variables. If the database lacks information about important events, the 
regression analysis will, at best, be poor or fail to find significant correlations. At worst, 
the correlations will be strong and significant, but pointing in the wrong directions. Data 
correlations may just be reactions to an external, but unknown signal, so rather than each 
other’s causes, both are reactions to the underlying event. 

The analyst extracting data from numeric databases should be aware that the data often 
is secondary, i.e. it was collected for other purposes than the intended goals of the present 
analysis. Using secondary data means that the analyst must scrutinise the original 
objectives to see if they interfere with the questions that the analyst is trying to answer. If 
the original goal may have been to supply measurements for a highly critical process 
where accuracy is paramount, and where one would like to spot any errors immediately, 
great trust in the data may be warranted. Even so, also safety-critical data contain errors 
that are readily obvious when they are scrutinised from a new vantage point. The analyst 
must also check the appropriateness of the data from other viewpoints, such as if the 
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statistical properties of the data are compatible with the necessary analyses techniques 
that are to be employed.  

Poor accuracy may also result from organisational gaps, for instance, because the user 
of the data has not made the data supplier aware that there are issues with them. Such 
issues may, for instance, not being forwarded to the correct recipients since the 
information channels are not working correctly. Proper use of the statistical methods 
relies on the assumption that data are independent and normally distributed. Data seldom 
are, but one can often salvage datasets where these assumptions are violated by choosing 
proper statistical tools or data transformations. 

 
Data quality assurance in the studied case 
The data for the current graphical approach to railway track condition monitoring entails 
many of the previously discussed issues. They are secondary data since they were 
sampled to evaluate the current asset status, rather than to form the basis for condition 
prognostics, that is, for forecasting purposes. The ultimate purpose of the analysis is to 
forecast asset conditions with enough accuracy so that appropriate maintenance planning 
can commence far enough into the future so that train schedules are not disturbed.  

While this distinction between assessing asset condition and obtaining condition data 
useful for forecasts may seem like a minor one, there are issues with the data that a 
diagnostic analysis of the current asset status will not reveal. Diagnostics of the current 
state assessment is a snapshot of the asset condition, but it is not a motion picture, 
whereby one could estimate how the condition will develop over time. Prognostics 
require both. The measurement trains measure with differing times between 
measurements, and the measurements need to be linked together to evaluate the speed of 
change of the measured property. A reasonable way to do this that will allow for is to 
estimate conditions within regular intervals, based on some method, for instance by using 
interpolation of historical data, for instance using splines, linear regression, or just to use 
the latest measurements as the best estimated for the condition at a specific time. All 
methods have their strengths and weaknesses. Here we used averaging of measurements 
obtained within the latest quarter to estimate the condition, due to simplicity and 
extrapolation stability.  

To link measurements over time means that one needs to certify that the second record 
relates to the same asset or asset segment as the first record. Better still if measurements 
have been obtained with the same equipment and personnel, with updated calibrations. 
To acknowledge such errors, one needs a frame of reference, that a single measurement 
will not provide. It is, therefore, not surprising that condition datasets obtained for a 
particular asset within a short time difference can differ substantially due to measurement 
issues rather than condition variation. Maintenance personnel did not find such issues 
when they only used the last and most current measurements.  

Positioning is, due to the linking of measurements in time, a central property. Since 
we are discussing railway assets that often remain in position for tens of years (for 
instance track) and sometimes hundreds of years (for instance, bridges and tunnels), one 
may assume that positioning is trivial. If the spatial information of the data is correct, it 
probably easy to link measurements. If not, the analyst needs to use some strategies for 
overcoming the spatial errors to estimate the speed of change of the properties. In the 
studied case, positioning errors have been considerable, and the strategy to overcome 
them has been to use data binning to split the track into segments long enough for failures 
to have a high probability of falling into the same segment during consecutive 
measurements, see also Bergquist & Söderholm (2012, 2015).  
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Another potential difficulty is that some external disturbances have affected the asset 
or the measurement equipment between measurements, which would lead to errors in the 
rate of asset degradation. Usually, maintenance prognostics aim to predict when the 
condition of the asset has degraded to such a poor state that it needs maintenance. The 
degradation rate of the asset property is, therefore, often what one seeks to combine this 
information with the state itself for condition predictions. However, sometimes the 
recorded asset condition has improved between measurements. Some of these unexpected 
events may be due to maintenance actions that one can find in other databases. If there is 
a viable reason for an improved asset condition, the proper way to handle things could be 
to remove prognoses until the deterioration rate is reasonably stable. A procedure to 
monitor improvements could include triggering alarms for larger improvements than a 
threshold level based on the expected normal variation. Improvements that are larger than 
what can be expected just by measurement uncertainties and which cannot be explained 
by external factors would mean that the current model is not valid for describing current 
data. In the case of the subarctic railway track maintenance studied here, such 
improvements that are known to influence readings could be ground frost effects, 
maintenance or due to changes of the measurement equipment such as calibrations. Some 
detective work may reveal the actual causes. Generally, events that are due to pure 
measurement errors, such as zero recordings, are easy to find and remove.  

Other unusual observations may also be easy to determine as erroneous, such as when 
the recordings are orders of magnitude different from the regular measurements. A 
multivariable bi-variate scatterplot as depicted in Figure 1 is useful to get an overview of 
the data. Two of the studied variables, two standard deviations of twist with 3 m or 6 m 
base has had several recordings stemming from another distribution, which is an 
illustration of the data with different orders of magnitude. The twist fault that can lead to 
derailments and it is thus safety critical and regularly measured. Figure 2 shows this 
deviation in detail. The twist data also contains zeros, which given the segmentation 
approach and the standard deviation studied here used is almost impossible, and the 
analyst should remove such observations. The time interval where ground frost events are 
likely should be possible to estimate for railways using local knowledge.  

 

 

Figure 1. Matrix plot of some measured track properties important for railway track safety, 
equipment reliability and passenger comfort. Note that the twist measurements split 

correlations into two groups. 
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In many cases, strange observations will remain mysterious. The analyst should consider 
all possibilities and consequences for keeping or disposing of the strange data where the 
culprits are not obvious. If, for instance, the intended use of the data is condition 
prognostics, a restart of the prognostic model could help, depending on the model design.  

For track geometry conditions, the maintenance itself will often unsettle the track 
superstructure. The first or first few measurements after maintenance may indicate that 
the superstructure geometry is well within its targets, but then the conditions may degrade 
rapidly until the superstructure has obtained a new, predictable, deterioration rate. If this 
happens, it may be advisable to restart the model. If the empirical prognostic model uses 
recent data to estimate future conditions of the property, the model is likely to generate 
poor predictions until the asset has settled. In the track case, a steady condition 
deterioration indicates that that the track has been subjected to sufficient transported 
weight or temperature variations for the ballast to wiggle into a more stable configuration.  

 

 

Figure 2. Histogram of the 6 m twist standard deviation reveals that two distributions have been 
combined, one centred just above zero. Further studies show that part of the data has a mean 

that is orders of magnitude lower than the rest, which indicates erroneous measurements.  
 

Seasonal effects may be necessary to include in the prognoses models. As already 
stated, reoccurring events such as winter frost may influence conditions. Geometrical 
conditions after the spring thaw or the autumn frost seasons may improve by themselves 
until the next measurement since frost is a function of the local water content of the 
substructure and temperature. Frost may, therefore, affect the track substructure or 
superstructure differently with considerable local variation; differences that dissipate as 
the frost thaws or has settled over the whole track segment. Temperatures themselves are 
also important as they force the material to expand and contract, causing stresses in the 
linear assets due to different thermal expansion coefficients.  

All of the above effects can be studied using time series plots. Figure 3 shows a time 
series plot of one of the critical geometrical properties, twist over 3m. The figure displays 
both the measurement data (circles) and quarter means (crosses). The figure also shows a 
Kalman filter model including a prediction confidence interval for the model based on 
the variation in the sample, as well as an upper confidence interval of the model data. The 
Kalman filter is based on the quarterly average since the sampling is not regular. The 
measurement frequency is too low and too irregular, so the model does not allow a 
standard seasonality component of the time series, but the Kalman filter is used to assess 
the current state but also predict future conditions. The model does in this case a poor job 
of estimating the data behaviour. The vertical dashed lines represent known maintenance 
(tamping). The twist variable must not exceed certain threshold values for comfort and 
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safety, so large absolute values are problematic. The expectancy is that maintenance will 
reduce the absolute twist, at least in the short term. Studying the observations in this plot 
reveals that in 2009, the absolute value decreased without obvious reasons. Since the 
model needs to have some degree of robustness against random variation such as 
measurement noise, it did not respond to the rapid decline, nor did it pick up the rapid 
degradation rate between 2010 and 2015. The 2009 improvement suggests some 
maintenance action that was not recorded in the data. Interestingly, the 2013 tamping does 
not appear to have improved the twist. A speculation is that the degradation rate has 
lessened as a result of the tamping. The 2014 tampings did, however, reduce the absolute 
value of the twist. Judging from the data, it appears that the situation again improved in 
2016, so it is possible that had been maintained or that there was something done with the 
measurement equipment, but this is not clear from available data. Another possibility is 
that the track measurement systems were updated or calibrated during these episodes. The 
situation improved again in 2017, to such a large extent that the model had automatically 
restarted.  

 

 

Figure 3. Time series model of the 3m twist variable for a 200 m segment obtained from track 
section 119 between 2007 and 2019.  

 
Graphical condition assessment and prognoses 
Graphics that are pictorial representations of data have the inherent property that they can 
make complex phenomena more easily interpretable (see, e.g., Bergquist & Söderholm, 
2012, 2015). We will here discuss pictorial representations of data in the form of 2D 
heatmaps, and use colours to represent dimensions beyond the 2D imagery. Figure 4 
shows a heatmap of data representing the condition of the track twist.  

Figure 4 shows railway twist, here the 6m twist. The vertical axis represents the spatial 
information, and the horizontal axis represents the temporal information. The colours of 
the heatmap denote the twist values. The plot was created in R, using the ggplot2 package 
and the geom_tile command. The colours appear as streaks of mostly orange or yellow 
from left to right. The figure represents quarterly averaged data from ten years. The 
horizontal segmentation is a representation of 200 m segments of the track section. The 
data for the maximum twist of the segment constitute the foundation for the model output, 
and the maximum twist values are those that are essential for safety concerns. Figure 4 
does not show maintenance actions, but all segments were tamped at least three times. 
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Figure 4. Graphical representation of track section 119 twist (6m) data from 2008-01-01 to 
2018-03-31. The vertical axis represents the spatial dimension of the track, and the horizontal 

represents the temporal.  
 

The observations have been segmented into bins representing maintenance classes, where 
dark green represents segments and times where the maximum 6 m twist for the segment 
was lower than the stipulated maximum for new tracks. Many conditions are worse than 
new, but they are still not of any concern (below the PLAN limit). Worse still are 
segments that are above the PLAN limit, which means that the maintenance organisation 
should consider maintaining the segment. The plot also shows even further degradations. 
When the track conditions have surpassed the UH1 (maintenance 1) limit, the 
maintenance organisation is required to plan maintenance so that they have performed it 
before the condition has reached the next level, UH2 (maintenance 2). If the condition 
exceeds the UH2, the maintenance organisation is required to maintain immediately. If 
the condition surpasses the KRIT (critical) limit, the track manager needs to close the 
track or impose speed restrictions until conditions have improved.  

It is possible to add another layer to the plot, showing the performed maintenance, and 
Figure 5 shows the plot with a maintenance layer added. In this figure, it is clear that 
problematic segments usually remain as problematic even after tamping, since the colour 
remains the same.  

The use of a geographical map for localisation purposes is attractive for linear assets 
such as railway track, but also for localising point assets (e.g. switches and crossings, 
bridges, and level crossings) as part of the infrastructure. Hence, a combination of 
heatmaps and geographical maps are useful for maintenance planning purposes. The use 
of GIS-applications and layers can also be used to integrate further information about the 
track surroundings that are useful for diagnostic and prognostic purposes, e.g. soil and 
water conditions. Furthermore, data about the weather should be useful for diagnostic and 
prognostic purposes. One example is the temperature, where low temperatures increase 
the risk for rail break and high temperatures increase the risk of buckling. 
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Figure 5. The image properties correspond to Figure 1, but here, the maintenance actions are 
also added (vertical black lines).  

 
 

 

Figure 6. Power BI Desktop colourmap representation of, in this case, the gauge variation, 
where red segments vary the most.  

 
Microsoft Power BI Desktop can also use R scripts and allows the user to run a collection 
of R packages for graphical presentations and analyses. This feature also allows for 
zooming, and Figure 6 shows an interactive display, allowing the user to zoom in on 
particular periods and track segments. In this plot, the colours are auto-scaled, from green 
in the colourmap representing segments with little gauge variation, to red where the 
variation is considerable. The Plotly package in R can also produce an interactive plot.  

Another source of information that should be valuable when performing diagnostics 
and prognostics is the actual maintenance actions done on a segment (Arasteh Khouy, 
2013; Famurewa, 2013). However, when dealing with the basic maintenance contracts, 
this information is stored locally within each contract (often in scanned PDF within a 
Share point solution) and not easily accessible for aggregated analysis. Appropriate usage 
of a standardised maintenance system (e.g. Maximo) should enable a more 
comprehensive analysis of performed maintenance actions (see, e.g., Al-Chalabi, 2018). 
The inspection system Bessy (e.g. inspection occasions and inspection remarks), the fault 
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reporting system 0Felia (e.g. faults, repair times, and repair actions) also contain some 
useful additional information about maintenance actions and the asset condition. The 
asset register (BIS) also contains some information that might be useful for analysis 
purposes, e.g. type of items and installation year. The relevant age of infrastructure items 
can be calculated by a combination of the calendar time and the yearly tonnage.   

 
Contributions 
The datasets that the measurement trains produce are large and riddled with defects, and 
things to consider for sifting out the relevant results are presented. The graphical plots 
show that some maintenance actions are not effective, that there are underlying factors 
that make some track segments to outperform others, that continue to be troublesome 
despite repeated maintenance actions. Such sections that have been troublesome for years 
may eventually need non-standard corrective maintenance or reinvestment stand out in 
the spatiotemporal graphical overview. The findings show that a proper analysis may 
reveal how much a maintenance action improves the asset condition, not only directly 
after the action, but also if the long-term deterioration rate is affected. Hence, both the 
infrastructure manager and the contracted entrepreneur can share a common view of the 
asset’s condition and maintenance effectiveness as a basis for continuous improvement. 
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